Which Liquid is the Most Viscous

Which Liquid is the Most Viscous

Viscosity is a material property which describes the resistance of a fluid to shearing flows. It corresponds roughly to the intuitive notion of a fluid’south ‘thickness’. For instance, dearest has a much higher viscosity than h2o. Viscosity is measured using a viscometer. Measured values span several orders of magnitude. Of all fluids, gases accept the lowest viscosities, and thick liquids have the highest.

The values listed in this article are representative estimates only, equally they exercise not account for measurement uncertainties, variability in material definitions, or non-Newtonian behavior.

Viscosities at or near standard conditions

[edit]

Hither “standard conditions” refers to temperatures of 25 °C and pressures of i atmosphere. Where data points are unavailable for 25 °C or 1 atmosphere, values are given at a nearby temperature/pressure.

The temperatures respective to each data signal are stated explicitly. By dissimilarity, force per unit area is omitted since gaseous viscosity depends merely weakly on it.

Gases

[edit]

Noble gases

[edit]

The simple structure of noble gas molecules makes them amenable to accurate theoretical treatment. For this reason, measured viscosities of the noble gases serve as of import tests of the kinetic-molecular theory of send processes in gases (see Chapman–Enskog theory). Ane of the key predictions of the theory is the following relationship betwixt viscosity




μ




{\displaystyle \mu }



, thermal conductivity




k


{\displaystyle k}



, and specific heat





c

5




{\displaystyle c_{v}}



:





k
=
f
μ



c

v




{\displaystyle grand=f\mu c_{v}}



where




f


{\displaystyle f}




is a constant which in full general depends on the details of intermolecular interactions, but for spherically symmetric molecules is very close to




two.5


{\displaystyle 2.5}



.[1]

This prediction is reasonably well-verified past experiments, as the following tabular array shows. Indeed, the relation provides a viable means for obtaining thermal conductivities of gases since these are more difficult to measure directly than viscosity.[1]
[2]

Substance Molecular

formula
Viscosity

(μPa·southward)
Thermal conductivity

(W m−1K−ane)
Specific estrus

(J Chiliad−ikg−1)




f



g

/

(
μ



c

v


)


{\displaystyle f\equiv 1000/(\mu c_{five})}



Notes Refs.
Helium He 19.85 0.153 3116 two.47 [ii]
[3]
Neon Ne 31.75 0.0492 618 2.51 [2]
[3]
Argon Ar 22.61 0.0178 313 2.52 [2]
[iii]
Krypton Kr 25.38 0.0094 149 2.49 [ii]
[iii]
Xenon Xe 23.08 0.0056 95.0 ii.55 [2]
[3]
Radon Rn ≈26 ≈0.00364 56.ii T = 26.85 °C;





g


{\displaystyle k}




calculated theoretically;




μ




{\displaystyle \mu }




estimated assuming




f
=
two.v


{\displaystyle f=2.five}



[4]

Diatomic elements

[edit]

Substance Molecular formula Viscosity (μPa·s) Notes Ref.
Hydrogen H2 8.90 [5]
Nitrogen N2 17.76 [5]
Oxygen O2 20.64 [6]
Fluorine F2 23.sixteen [7]
Chlorine Cl2 13.forty [7]

Hydrocarbons

[edit]

Substance Molecular formula Viscosity (μPa·s) Notes Ref.
Methane CH4 11.thirteen [viii]
Acetylene CtwoH2 ten.2 T = twenty °C [9]
Ethylene CtwoH4 x.28 [8]
Ethane C2H6 9.27 [viii]
Propyne C3H4 8.67 T = 20 °C [9]
Propene C3H6 eight.39 [10]
Propane C3H8 8.18 [8]
Butane CfourH10 vii.49 [8]

Organohalides

[edit]

Substance Molecular formula Viscosity (μPa·s) Notes Ref.
Carbon tetrafluoride CF4 17.32 [11]
Fluoromethane CH3F 11.79 [12]
Difluoromethane CH2F2 12.36 [12]
Fluoroform CHF3 fourteen.62 [12]
Pentafluoroethane C2HFfive 12.94 [12]
Hexafluoroethane C2F6 14.00 [12]
Octafluoropropane C3F8 12.44 [12]

Other gases

[edit]

Substance Molecular formula Viscosity (μPa·s) Notes Ref.
Air eighteen.46 [6]
Ammonia NHthree 10.07 [thirteen]
Nitrogen trifluoride NF3 17.11 T = 26.85 °C [14]
Boron trichloride BCl3 12.3 Theoretical estimate at T = 26.85 °C;
estimated uncertainty of 10%
[14]
Carbon dioxide CO2 fourteen.90 [15]
Carbon monoxide CO 17.79 [16]
Hydrogen sulfide H2Southward 12.34 [17]
Nitric oxide NO eighteen.90 [7]
Nitrous oxide NiiO 14.90 [18]
Sulfur dioxide And so2 12.82 [ten]
Sulfur hexafluoride SF6 xv.23 [five]
Molybdenum hexafluoride MoF6 14.v Theoretical estimates at T = 26.85 °C [19]
Tungsten hexafluoride WFsix 17.one
Uranium hexafluoride UF6 17.4

Liquids

[edit]

due north-Alkanes

[edit]

Substances composed of longer molecules tend to have larger viscosities due to the increased contact of molecules beyond layers of flow.[20]
This effect can exist observed for the n-alkanes and 1-chloroalkanes tabulated below. More dramatically, a long-chain hydrocarbon like squalene (C30H62) has a viscosity an club of magnitude larger than the shorter n-alkanes (roughly 31 mPa·s at 25 °C). This is also the reason oils tend to exist highly mucilaginous, since they are usually composed of long-chain hydrocarbons.

Substance Molecular formula Viscosity (mPa·s) Notes Ref.
Pentane CfiveH12 0.224 [21]
Hexane C6H14 0.295 [22]
Heptane C7Hxvi 0.389 [22]
Octane C8H18 0.509 [22]
Nonane C9H20 0.665 [21]
Decane C10H22 0.850 [22]
Undecane CelevenH24 1.098 [21]
Dodecane C12H26 ane.359 [22]
Tridecane CthirteenH28 1.724 [21]
Tetradecane C14H30 2.078 [22]
Pentadecane CxvH32 2.82 T = 20 °C [23]
Hexadecane C16H34 3.03 [21]
Heptadecane C17H36 four.21 T = xx °C [24]

i-Chloroalkanes

[edit]

Substance Molecular formula Viscosity (mPa·south) Notes Ref.
Chlorobutane CivH9Cl 0.4261 [25]
Chlorohexane C6H11Cl 0.6945
Chlorooctane C8H17Cl 1.128
Chlorodecane CtenH21Cl 1.772
Chlorododecane C12H25Cl ii.668
Chlorotetradecane C14H29Cl three.875
Chlorohexadecane CsixteenH33Cl 5.421
Chlorooctadecane CeighteenH37Cl vii.385 Supercooled liquid

Other halocarbons

[edit]

Substance Molecular formula Viscosity (mPa·southward) Notes Ref.
Dichloromethane CHtwoCl2 0.401 [26]
Trichloromethane

(chloroform)
CHCliii 0.52 [ten]
Tribromomethane

(bromoform)
CHBr3 1.89 [27]
Carbon tetrachloride CClfour 0.86 [27]
Trichloroethylene C2HClthree 0.532 [28]
Tetrachloroethylene CtwoCl4 0.798 T = 30 °C [28]
Chlorobenzene C6H5Cl 0.773 [29]
Bromobenzene C6HfiveBr one.080 [29]
one-Bromodecane C10H21Br 3.373 [30]

Alkenes

[edit]

Substance Molecular formula Viscosity (mPa·south) Notes Ref.
2-Pentene C5Hx 0.201 [31]
1-Hexene Chalf dozenH12 0.271 [32]
1-Heptene C7Hxiv 0.362 [32]
one-Octene C8H16 0.506 T = xx °C [31]
ii-Octene C8H16 0.506 T = 20 °C [31]
n-Decene C10H20 0.828 T = 20 °C [31]

Other liquids

[edit]

Substance Molecular formula Viscosity (mPa·s) Notes Ref.
Acetic acid C2H4O2 one.056 [21]
Acetone CiiiHhalf dozenO 0.302 [33]
Benzene C6Hvi 0.604 [21]
Bromine Brii 0.944 [21]
Ethanol CtwoH6O 1.074 [21]
Glycerol C3H8O3 1412 [34]
Hydrazine HivN2 0.876 [21]
Iodine pentafluoride IFfive 2.111 [35]
Mercury Hg 1.526 [21]
Methanol CHfourO 0.553 [36]
1-Propanol (propyl alcohol) C3H8O 1.945 [37]
two-Propanol (isopropyl alcohol) C3HviiiO 2.052 [37]
Squalane C30H62 31.123 [38]
Water H2O 1.0016 T = 20 °C, standard force per unit area [21]

Aqueous solutions

[edit]

The viscosity of an aqueous solution can either increment or decrease with concentration depending on the solute and the range of concentration. For instance, the table below shows that viscosity increases monotonically with concentration for sodium chloride and calcium chloride, just decreases for potassium iodide and cesium chloride (the latter upwards to 30% mass percentage, after which viscosity increases).

The increase in viscosity for sucrose solutions is particularly dramatic, and explains in function the common experience of sugar water being “sticky”.

Table: Viscosities (in mPa·s) of aqueous solutions at T = 20 °C for various solutes and mass percentages[21]
Solute mass pct = 1% ii% iii% four% 5% 10% xv% 20% 30% xl% 50% lx% 70%
Sodium chloride (NaCl) i.020 ane.036 1.052 1.068 one.085 1.193 ane.352 ane.557
Calcium chloride (CaCltwo) 1.028 1.050 1.078 1.110 ane.143 one.319 1.564 1.930 iii.467 8.997
Potassium iodide (KI) 0.997 0.991 0.986 0.981 0.976 0.946 0.925 0.910 0.892 0.897
Cesium chloride (CsCl) 0.997 0.992 0.988 0.984 0.980 0.966 0.953 0.939 0.922 0.934 0.981 1.120
Sucrose (C12H22O11) 1.028 one.055 1.084 1.114 i.146 1.336 1.592 ane.945 3.187 six.162 15.431 58.487 481.561

Substances of variable composition

[edit]

Substance Viscosity (mPa·s) Temperature (°C) Reference
Whole milk ii.12 20 [39]
Olive oil 56.2 26 [39]
Canola oil 46.2 30 [39]
Sunflower oil 48.8 26 [39]
Love









{\displaystyle \approx }




2000-10000

20 [40]
Ketchup[a]









{\displaystyle \approx }




5000-20000

25 [41]
Peanut butter[a]









{\displaystyle \approx }




ten4-ten6

[42]
Pitch
two.3×1011
ten-30 (variable) [43]
  1. ^


    a




    b



    These materials are highly non-Newtonian.

Viscosities nether nonstandard conditions

[edit]

Gases

[edit]

Pressure level dependence of the viscosity of dry air at 300, 400 and 500 kelvins

All values are given at i bar (approximately equal to atmospheric pressure).

Substance Chemical formula Temperature (K) Viscosity (μPa·southward)
Air 100 vii.1
200 xiii.3
300 18.five
400 23.1
500 27.1
600 30.8
Ammonia NH3 300 x.2
400 14.0
500 17.ix
600 21.vii
Carbon dioxide CO2 200 10.ane
300 15.0
400 xix.seven
500 24.0
600 28.0
Helium He 100 9.half-dozen
200 15.1
300 19.nine
400 24.iii
500 28.iii
600 32.2
Water vapor HtwoO 380 12.498
400 xiii.278
450 15.267
500 17.299
550 19.356
600 21.425
650 23.496
700 25.562
750 27.617
800 29.657
900 33.680
grand 37.615
1100 41.453
1200 45.192


Liquids (including liquid metals)

[edit]

Viscosity of h2o equally a function of temperature

Substance Chemical formula Temperature (°C) Viscosity (mPa·s)
Mercury[44]
[45]
Hg -thirty 1.958
-20 1.856
-10 1.766
0 1.686
x one.615
20 1.552
25 1.526
30 1.495
l 1.402
75 one.312
100 1.245
126.85 one.187
226.85 i.020
326.85 0.921
Ethanol CtwoH6O -25 iii.26
0 1.786
25 1.074
50 0.694
75 0.476
Bromine Br2 0 1.252
25 0.944
l 0.746
Water H2O 0.01 1.7911
10 1.3059
twenty 1.0016
25 0.89002
xxx 0.79722
twoscore 0.65273
50 0.54652
60 0.46603
70 0.40355
80 0.35405
90 0.31417
99.606 0.28275
Glycerol CiiiH8O3 25 934
50 152
75 39.8
100 14.76
Aluminum Al 700 ane.24
800 one.04
900 0.90
Golden Au 1100 5.130
1200 4.640
1300 4.240
Copper Cu 1100 3.92
1200 3.34
1300 2.91
1400 2.58
1500 ii.31
1600 2.10
1700 ane.92
Silver Ag 1300 3.75
1400 3.27
1500 2.91
Iron Iron 1600 five.22
1700 4.41
1800 3.79
1900 3.31
2000 2.92
2100 2.60


In the post-obit table, the temperature is given in kelvins.

Substance Chemical formula Temperature (K) Viscosity (mPa·s)
Gallium[45] Ga 400 i.158
500 0.915
600 0.783
700 0.700
800 0.643
Zinc[45] Zn 700 3.737
800 two.883
900 two.356
m 2.005
1100 1.756
Cadmium[45] Cd 600 ii.708
700 2.043
800 1.654
900 1.403

Solids

[edit]

Substance Viscosity (Pa·south) Temperature (°C)
granite[46]
3×10nineteen



6×1019
25
asthenosphere[47]
7.0×tennineteen
900
upper mantle[47]
7×1020



i×1021
1300–3000
lower mantle[
commendation needed
]

1×1021



2×1021
3000–4000

References

[edit]

  1. ^


    a




    b




    Chapman, Sydney; Cowling, T.Thousand. (1970),
    The Mathematical Theory of Not-Uniform Gases
    (3rd ed.), Cambridge University Press


  2. ^


    a




    b




    c




    d




    eastward




    f




    Kestin, J.; Ro, S. T.; Wakeham, W. A. (1972). “Viscosity of the Noble Gases in the Temperature Range 25–700°C”.
    The Journal of Chemical Physics.
    56
    (8): 4119–4124. doi:ten.1063/one.1677824. ISSN 0021-9606.


  3. ^


    a




    b




    c




    d




    e




    Le Neindre, B.; Garrabos, Y.; Tufeu, R. (1989). “Thermal conductivity of dense noble gases”.
    Physica A: Statistical Mechanics and Its Applications.
    156
    (ane): 512–521. doi:10.1016/0378-4371(89)90137-iv. ISSN 0378-4371.



  4. ^


    Ho, C. Y.; Powell, R. W.; Liley, P. East. (1972). “Thermal Conductivity of the Elements”.
    Periodical of Physical and Chemic Reference Data.
    one
    (2): 279–421. doi:10.1063/1.3253100. ISSN 0047-2689.


  5. ^


    a




    b




    c




    Assael, M. J.; Kalyva, A. Due east.; Monogenidou, Due south. A.; Huber, M. L.; Perkins, R. A.; Friend, D. K.; May, E. F. (2018). “Reference Values and Reference Correlations for the Thermal Electrical conductivity and Viscosity of Fluids”.
    Journal of Concrete and Chemical Reference Data.
    47
    (2): 021501. doi:10.1063/1.5036625. ISSN 0047-2689. PMC6463310. PMID 30996494.


  6. ^


    a




    b




    Kestin, J.; Leidenfrost, W. (1959). “An absolute conclusion of the viscosity of eleven gases over a range of pressures”.
    Physica.
    25
    (7–12): 1033–1062. doi:x.1016/0031-8914(59)90024-2. ISSN 0031-8914.


  7. ^


    a




    b




    c




    Yaws, Carl 50. (1997),
    Handbook Of Viscosity: Volume 4: Inorganic Compounds And Elements, Gulf Professional person Publishing, ISBN978-0123958501


  8. ^


    a




    b




    c




    d




    e




    Kestin, J; Khalifa, H.Due east.; Wakeham, Due west.A. (1977). “The viscosity of five gaseous hydrocarbons”.
    The Journal of Chemical Physics.
    66
    (3): 1132–1134. Bibcode:1977JChPh..66.1132K. doi:10.1063/ane.434048.


  9. ^


    a




    b




    Titani, Toshizo (1930). “The viscosity of vapours of organic compounds. Role Two”.
    Bulletin of the Chemical Gild of Japan.
    v
    (3): 98–108. doi:10.1246/bcsj.5.98.


  10. ^


    a




    b




    c




    Miller, J.West. Jr.; Shah, P.Due north.; Yaws, C.Fifty. (1976). “Correlation constants for chemical compounds”.
    Chemic Engineering science.
    83
    (25): 153–180. ISSN 0009-2460.



  11. ^


    Kestin, J.; Ro, S.T.; Wakeham, Westward.A. (1971). “Reference values of the viscosity of twelve gases at 25°C”.
    Transactions of the Faraday Social club.
    67: 2308–2313. doi:ten.1039/TF9716702308.


  12. ^


    a




    b




    c




    d




    e




    f




    Dunlop, Peter J. (1994). “Viscosities of a series of gaseous fluorocarbons at 25 °C”.
    The Journal of Chemic Physics.
    100: 3149. doi:10.1063/1.466405.



  13. ^


    Iwasaki, Hiroji; Takahashi, Mitsuo (1968). “Studies on the ship backdrop of fluids at high pressure”.
    The Review of Physical Chemistry of Japan.
    38
    (1).


  14. ^


    a




    b




    “Database of the Thermophysical Backdrop of Gases Used in the Semiconductor Industry | NIST”. Archived from the original on 2019-07-11. Retrieved
    2019-07-11
    .



  15. ^


    Schäfer, Michael; Richter, Markus; Span, Roland (2015). “Measurements of the viscosity of carbon dioxide at temperatures from (253.xv to 473.15)K with pressures upward to ane.2MPa”.
    The Journal of Chemic Thermodynamics.
    89: 7–fifteen. doi:10.1016/j.jct.2015.04.015. ISSN 0021-9614.



  16. ^


    Kestin, J.; Ro, Due south. T.; Wakeham, W. A. (1982). “The Viscosity of Carbon-Monoxide and its Mixtures with Other Gases in the Temperature Range 25 – 200°C”.
    Berichte der Bunsengesellschaft für physikalische Chemie.
    86
    (viii): 753–760. doi:10.1002/bbpc.19820860816. ISSN 0005-9021.



  17. ^


    Pal, Arun K.; Bhattacharyya, P. Yard. (1969). “Viscosity of Binary Polar‐Gas Mixtures”.
    The Journal of Chemic Physics.
    51
    (2): 828–831. doi:x.1063/1.1672075. ISSN 0021-9606.



  18. ^


    Takahashi, Mitsuo; Shibasaki-Kitakawa, Naomi; Yokoyama, Chiaki; Takahashi, Shinji (1996). “Viscosity of Gaseous Nitrous Oxide from 298.15 K to 398.15 Thou at Pressures up to 25 MPa”.
    Journal of Chemical & Engineering science Information.
    41
    (6): 1495–1498. doi:x.1021/je960060d. ISSN 0021-9568.



  19. ^


    Zarkova, L.; Hohm, U. (2002). “pVT–Second Virial Coefficients B(T), Viscosity eta(T), and Self-Diffusion rhoD(T) of the Gases: BF3, CF4, SiF4, CCl4, SiCl4, SF6, MoF6, WF6, UF6, C(CH3)4, and Si(CH3)4 Determined by Means of an Isotropic Temperature-Dependent Potential”.
    Journal of Physical and Chemical Reference Data.
    31
    (one): 183–216. doi:10.1063/1.1433462. ISSN 0047-2689.



  20. ^


    chem.libretexts.org. “Intermolecular Forces in Activeness: Surface Tension, Viscosity, and Capillary Action”.
    chem.libretexts.org. Archived from the original on 2019-07-24. Retrieved
    2019-07-24
    .


  21. ^


    a




    b




    c




    d




    e




    f




    yard




    h




    i




    j




    k




    l




    m



    CRC Handbook of Chemical science and Physics, 99th Edition (Internet Version 2018), John R. Rumble, ed., CRC Press/Taylor & Francis, Boca Raton, FL.
  22. ^


    a




    b




    c




    d




    e




    f




    Dymond, J. H.; Oye, H. A. (1994). “Viscosity of Selected Liquid north‐Alkanes”.
    Journal of Physical and Chemic Reference Data.
    23
    (1): 41–53. doi:x.1063/1.555943. ISSN 0047-2689.



  23. ^


    Wu, Jianging; Nhaesi, Abdulghanni H.; Asfour, Abdul-Fattah A. (1999). “Viscosities of Eight Binary Liquidn-Methane series Systems at 293.15 One thousand and 298.15 Thou”.
    Journal of Chemic & Engineering Information.
    44
    (five): 990–993. doi:10.1021/je980291f. ISSN 0021-9568.



  24. ^


    Doolittle, Arthur K. (1951). “Studies in Newtonian Flow. Ii. The Dependence of the Viscosity of Liquids on Free‐Space”.
    Journal of Applied Physics.
    22
    (12): 1471–1475. Bibcode:1951JAP….22.1471D. doi:x.1063/one.1699894. ISSN 0021-8979.



  25. ^


    Coursey, B. K.; Heric, Due east. L. (1971). “AApplication of the Congruence Principle to Viscosities of 1-Chloroalkane Binary Mixtures”.
    Canadian Periodical of Chemical science.
    49
    (xvi): 2631–2635. doi:10.1139/v71-437. ISSN 0008-4042.



  26. ^


    Wang, Jianji; Tian, Yong; Zhao, Yang; Zhuo, Kelei (2003). “A volumetric and viscosity study for the mixtures of ane-due north-butyl-3-methylimidazolium tetrafluoroborate ionic liquid with acetonitrile, dichloromethane, two-butanone and North, Northward ? dimethylformamide”.
    Green Chemical science.
    5
    (5): 618. doi:10.1039/b303735e. ISSN 1463-9262.


  27. ^


    a




    b




    Reid, Robert C.; Prausnitz, John M.; Poling, Bruce East. (1987),
    The Properties of Gases and Liquids, McGraw-Colina Book Company, p. 442, ISBN0-07-051799-one


  28. ^


    a




    b




    Venkatesulu, D.; Venkatesu, P.; Rao, Yard. V. Prabhakara (1997). “Viscosities and Densities of Trichloroethylene or Tetrachloroethylene with 2-Alkoxyethanols at 303.xv One thousand and 313.xv Chiliad”.
    Journal of Chemical & Engineering Data.
    42
    (ii): 365–367. doi:ten.1021/je960316f. ISSN 0021-9568.


  29. ^


    a




    b




    Nayak, Jyoti Northward.; Aralaguppi, Mrityunjaya I.; Aminabhavi, Tejraj M. (2003). “Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Ethyl Chloroacetate + Cyclohexanone, + Chlorobenzene, + Bromobenzene, or + Benzyl Alcohol at (298.15, 303.fifteen, and 308.15) K”.
    Journal of Chemic & Engineering Data.
    48
    (3): 628–631. doi:ten.1021/je0201828. ISSN 0021-9568.



  30. ^


    Cokelet, Giles R.; Hollander, Frederick J.; Smith, Joseph H. (1969). “Density and viscosity of mixtures of ane,ane,2,two-tetrabromoethane and 1-bromododecane”.
    Journal of Chemical & Engineering science Information.
    xiv
    (4): 470–473. doi:10.1021/je60043a017. ISSN 0021-9568.


  31. ^


    a




    b




    c




    d




    Wright, Franklin J. (1961). “Influence of Temperature on Viscosity of Nonassociated Liquids”.
    Journal of Chemical & Engineering Data.
    half dozen
    (3): 454–456. doi:10.1021/je00103a035. ISSN 0021-9568.


  32. ^


    a




    b




    Sagdeev, D. I.; Fomina, M. K.; Mukhamedzyanov, K. Kh.; Abdulagatov, I. M. (2014). “Experimental Study and Correlation Models of the Density and Viscosity of 1-Hexene and 1-Heptene at Temperatures from (298 to 473) K and Pressures upwards to 245 MPa”.
    Journal of Chemical & Engineering science Data.
    59
    (iv): 1105–1119. doi:x.1021/je401015e. ISSN 0021-9568.



  33. ^


    Petrino, P. J.; Gaston-Bonhomme, Y. H.; Chevalier, J. L. Eastward. (1995). “Viscosity and Density of Binary Liquid Mixtures of Hydrocarbons, Esters, Ketones, and Normal Chloroalkanes”.
    Journal of Chemical & Engineering Data.
    40
    (1): 136–140. doi:10.1021/je00017a031. ISSN 0021-9568.



  34. ^


    Segur, J. B.; Oberstar, H. East. (1951). “Viscosity of Glycerol and Its Aqueous Solutions”.
    Industrial & Engineering science Chemistry.
    43
    (9): 2117–2120. doi:10.1021/ie50501a040.



  35. ^


    Hetherington, 1000.; Robinson, P.L. (1956). “The Viscosities of Iodine Pentafluoride and Ditellurium Decafluoride”.
    Periodical of the Chemic Guild (Resumed): 3681. doi:10.1039/jr9560003674. ISSN 0368-1769.



  36. ^


    Canosa, J.; Rodríguez, A.; Tojo, J. (1998). “Dynamic Viscosities of (Methyl Acetate or Methanol) with (Ethanol, one-Propanol, two-Propanol, i-Butanol, and two-Butanol) at 298.15 G”.
    Periodical of Chemic & Engineering Data.
    43
    (3): 417–421. doi:ten.1021/je9702302. ISSN 0021-9568.


  37. ^


    a




    b




    Paez, Susana; Contreras, Martin (1989). “Densities and viscosities of binary mixtures of ane-propanol and two-propanol with acetonitrile”.
    Journal of Chemical & Engineering Data.
    34
    (iv): 455–459. doi:x.1021/je00058a025. ISSN 0021-9568.



  38. ^


    Lal, Krishan; Tripathi, Neelima; Dubey, Gyan P. (2000). “Densities, Viscosities, and Refractive Indices of Binary Liquid Mixtures of Hexane, Decane, Hexadecane, and Squalane with Benzene at 298.fifteen K”.
    Journal of Chemical & Engineering science Information.
    45
    (5): 961–964. doi:ten.1021/je000103x. ISSN 0021-9568.


  39. ^


    a




    b




    c




    d




    Fellows, P.J. (2009),
    Food Processing Technology: Principles and Practice
    (tertiary ed.), Woodhead Publishing, ISBN978-1845692162



  40. ^


    Yanniotis, Southward.; Skaltsi, South.; Karaburnioti, S. (Feb 2006). “Effect of moisture content on the viscosity of honey at unlike temperatures”.
    Periodical of Food Engineering.
    72
    (4): 372–377. doi:10.1016/j.jfoodeng.2004.12.017.



  41. ^


    Koocheki, Arash; Ghandi, Amir; Razavi, Seyed Yard. A.; Mortazavi, Seyed Ali; Vasiljevic, Todor (2009), “The rheological properties of ketchup as a function of dissimilar hydrocolloids and temperature”,
    International Journal of Food Science & Technology,
    44
    (3): 596–602, doi:10.1111/j.1365-2621.2008.01868.10



  42. ^


    Citerne, Guillaume P.; Carreau, Pierre J.; Moan, Michel (2001), “Rheological properties of peanut butter”,
    Rheologica Acta,
    forty
    (1): 86–96, doi:10.1007/s003970000120, S2CID 94555820



  43. ^


    Edgeworth, R; Dalton, B J; Parnell, T (1984), “The pitch driblet experiment”,
    European Journal of Physics,
    five
    (4): 198–200, Bibcode:1984EJPh….five..198E, doi:10.1088/0143-0807/v/iv/003



  44. ^


    Suhrmann, Von R.; Wintertime, E.-O. (1955), “Dichte- und Viskositätsmessungen an Quecksilber und hochverdünnten Kalium- und Cäsiumamalgamen vom Erstarrungspunkt bis + thirty C”,
    Zeitschrift für Naturforschung,
    10a
    (12): 985, doi:10.1515/zna-1955-1211, S2CID 97692836, archived from the original on 2020-02-xv, retrieved
    2021-10-17



  45. ^


    a




    b




    c




    d




    Assael, Marc J.; Armyra, Ivi J.; Brillo, Juergen; Stankus, Sergei V.; Wu, Jiangtao; Wakeham, William A. (2012), “Reference Data for the Density and Viscosity of Liquid Cadmium, Cobalt, Gallium, Indium, Mercury, Silicon, Thallium, and Zinc”
    (PDF),
    Journal of Physical and Chemical Reference Data,
    41
    (three): 033101, doi:x.1063/1.4729873, archived
    (PDF)
    from the original on 2021-10-17, retrieved
    2019-12-12




  46. ^


    Kumagai, Naoichi; Sasajima, Sadao; Ito, Hidebumi (fifteen February 1978). “Long-term Pitter-patter of Rocks: Results with Big Specimens Obtained in about 20 Years and Those with Small Specimens in most 3 Years”.
    Journal of the Society of Materials Science (Nippon).
    27
    (293): 157–161. Archived from the original on 2011-05-21. Retrieved
    2008-06-xvi
    .


  47. ^


    a




    b




    Fjeldskaar, W. (1994). “Viscosity and thickness of the asthenosphere detected from the Fennoscandian uplift”.
    World and Planetary Science Letters.
    126
    (4): 399–410. Bibcode:1994E&PSL.126..399F. doi:10.1016/0012-821X(94)90120-1.




Which Liquid is the Most Viscous

Source: https://en.wikipedia.org/wiki/List_of_viscosities

Popular:   Which Action Would Be Protected by the Ninth Amendment